Zamanti Nehri-Ergenusağı Đstasyonu Eksik Aylık Akım Verilerinin Tahmini

Veysel GÜMÜŞ, M. Eyyüp KAVŞUT
1.837 1.246

Öz


Akarsu yapılarının tasarımında, akım verilerinin sürekliliği büyük önem tasımaktadır. Ancak bazı istasyonlara ait ölçümler belli zaman aralıklarında eksik olabilmektedir. Geçmise yönelik yeterli ölçümü bulunmayan istasyonların verileri aynı havza içerisinde bulunan ve hidrometeorolojik olarak benzer diğer istasyonların verileri ile farklı yöntemler kullanılarak tahmin edilebilmektedir. Bu çalısmada, yapay sinir ağı yöntemlerinden, İleri Beslemeli Geri Yayınımlı Yapay Sinir Ağı (ĐBGYSA), Radyal Tabanlı Yapay Sinir Ağı (RTYSA) ve Genellestirilmis Regresyon Yapay Sinir Ağı (GRYSA) kullanılarak, Seyhan Havzasında bulunan 1806 numaralı Zamanti Nehri-Ergenusağı akım gözlem istasyonuna ait eksik aylık akım verileri tahmin edilmistir. Çalısma sonucunda İBGYSA yönteminin eksik veri tahmininde diğer yöntemlerden az da olsa daha iyi sonuç verdiği görülmüstür.

Anahtar kelimeler: Yapay sinir ağları, eksik veri, Seyhan Havzası, Zamanti Nehri.


Anahtar kelimeler


Yapay sinir ağları, eksik veri, Seyhan Havzası, Zamanti Nehri.

Tam metin:

PDF

Referanslar


Zealand, C. M., Burn, D. H. ve Simonovic, S. P. "Short term streamflow forecasting using artificial neural networks", Journal of Hydrology, 214: 32-48, (1999).

Kişi, Ö. "River Flow Modeling Using Artificial Neural Networks". J Hydrol Eng, 9: 60-63, (2004).

Coulibaly, P. ve Evora, N. D. "Comparison of neural network methods for infilling missing daily weather records". Journal of Hydrology, 341: 27-41, (2007).

Rajurkar, M. P., Kothyari, U. C. ve Chaube, U. C. "Modeling of the daily rainfall-runoff relationship with artificial neural network". Journal of Hydrology, 285, 1-4, 96-113, (2004).

Yurdusev, M. A., Acı, M., Turan, M. E. ve İçağa, Y. "Akarçay Nehri Aylık Akımlarının Yapay Sinir Ağları ile Tahmini". C.B.Ü. Fen Bilimleri Dergisi, 4.1, 2008, 73-88, (2008).

Cigizoglu, H. K. "Estimation and forecasting of daily suspended sediment data by perceptrons". Advances in Water Resources, 27: 185- 195, (2004). multi-layer

Kişi, Ö. "Daily River Flow Forecasting Using Artificial Neural Networks and Auto-Regressive Models". Turkish J. Eng. Env. Sci., 29: 9-20, (2005).

Küçük, M. ve Ağiralioğlu, N. "Wavelet Regression Technique for Streamflow Prediction". Journal of Applied Statistics, 33: 943-960, (2006).

Shiri, J. ve Kişi, Ö. "Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations". Computers & Geosciences, 37: 1692-1701, (2011).

Kisi, O., Shiri, J. ve Tombul, M. "Modeling rainfall-runoff techniques". Computers & Geosciences, 51: 108-117, (2013). using soft computing

Gümüş, V., Kavsut, M. E. ve Yenigün, K. "Yağış- Akış İlişkisinin Modellenmesinde YSA Kullanımının Değerlendirilmesi: Orta Fırat Havzası Uygulaması". Bilimde Diyarbakır, 14-16 Ekim, (2010). Sempozyumu,

EİEİ "Su Akımları Yıllığı", (2005).

Lippmann, R. P. "An introduction to computing with neural nets". ACM SIGARCH Computer Architecture News, 16, 7-25, (1988).

Marquardt, D. W. "An Algorithm for Least- Squares Estimation of Nonlinear Parameters". Journal of the Society for Industrial and Applied Mathematics, 11: 431-441, (1963).

Kişi, Ö. "Yapay Sinir Ağları ve Regresyon Teknikleri ile Filyos Çayı Akımlarının Tahmini". IV.Hidroloji Kongresi, İstanbul, (2004).

Broomhead, D. S. ve Lowe, D. "Multivariable Functional Interpolation and Adaptive Networks". Complex Systems, 2: 321-355, (1988).

Specht, D. F. "A general regression neural network.". IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, 2: 568-576, (1991).

Partal, R. "Uygulamalı Çok Değişkenli İstatistiksel Yöntemlere Giriş - 1", 404, (2003).

Van Ooyen, A. ve Nienhuis, B. "Improving the convergence of the back-propagation algorithm". Neural Networks, 5: 465-471, (1992).

Cobaner, M., Seckin, G. ve Kisi, O. "Initial assessment of bridge backwater using an artificial neural network approach". Canadian Journal of Civil Engineering, 35: 500-510, (2008).




e-ISSN:2147-9526